IDEAS

productivity

Performance Portability
Without Relying on C++
Based Abstractions

PERMAVOST Workshop Orlando 2023
Anshu Dubey

Contributors: Tom Klosterman, Jared O’Neal, Johann Rudi
Mohamed Wahib, , Klaus Weide

&% U.S. DEPARTMENT OF




acknowledgements

J This work was supported by the U.S. Department of Energy Office of
Science, Office of Advanced Scientific Computing Research (ASCR),
and by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

J This work was performed in part at the Argonne National Laboratory,
which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357

Argonne‘)

NATIONAL LABORATORY



Starting Point in Extensible Software Architecture

JBuilding blocks of code

JHierarchy of granularity
JUnits, subunits, components

JIMultiple alternative implementations
INull implementations of API
JIHigh degree of composability
JIHigh degree of customizability

A tool that can arbitrate on what to include when
Self describing code components

Argonne‘)

NATIONAL LABORATORY



# Config file for the gravity module. Available sub-modules:

f Constant Spatially/temporally constant gravitational field
# PlanePar 1/r"2 field for a distant point source

f# PointMass 1/r"2 field for an arbitrarily placed point source
f# Poisson Field for a self-gravitating matter distribution

# UserDefined A user-defined field

REQUIRES Driver

DEFAULT Constant

PPDEFINE GRAVITY

EXCLUSIVE Constant PlanePar PointMass Poisson UserDefined
PARAMETER useGravity BOOLEAN TRUE

AAAAAAAAAAAAAAAAAA



The Key to Composability

Encoded metadata
Units | need
Units | don’t work with

State variables | need
AMR specific needs
Runtime parameters | want ...

Config files

Alternative
Implementations

Sub components
Argonne°

NATIONAL LABORATORY



Platform Heterogeneity

Computation

CPU

Other
acceler-
ators

GPU

Other
devices

Cache

: Device
hierar- memory
chy
NVram Other
types

Network

Between Within
nodes node
With 1/0 Other
types

Argonne®

NATIONAL LABORATORY



Mechanisms Needed by the Code

Mechanisms to move work and data

to computational targets

* Moving between devices
* Launching work at the destination
* Hiding latency of movement

* Moving data offnode

Mechanisms to unify expression of
computation

*  Minimize maintained variants of source
suitable for all computational devices
* Reconcile differences in data structures

So what do we need?
Mechanisms to map work to

computational targets * Abstractions layers
* Figuring out the map e Code transformation tools
 Data movement orchestrators

Argonne°

NATIONAL LABORATORY

* Expression of dependencies
 Cost models
* Expressing the map




Philosophy of Design

Let the code developer decide what should be done for
optimization on a platform

JMake it easy to have that happen without coding to metal

IHave a set of tools, each with limited functionality
Tools remain simple and easy to maintain by non-experts
ICombination of tools provides a powerful solution

Tools can permute and combine building blocks, do some code
translation and compose a full application
Argonne‘)

JAs far as possible tools also have building blocks




CGkit

1 Generating Code from Recipes and code Templates

recipes (DSL)
written by
humans

Recipe Tool
(DSL Parser)

templates
(FORTRAN or
C/C++)

Control Flow

Tool

Source Tree
Tool

1

source code
for time

stepping

Argonne°

NATIONAL LABORATORY



CGkit

1 Generating Code from Recipes and code Templates

recipes (DSL . source code
wrFi)tter(i b ) Recipe Tool Control Flow Source Tree for time
y (DSL Parser) Tool Tool :
humans stepping
templates
(FORTRAN or
C/C++)
Orthogonal Example recipe Resulting control flow graph
separation ~ ,
dln = ConcurrentDataBegin() ()
of concerns
[ : aR = Actieon{routine="functicn_R") {dln] 'y ] —
+ a5 = Action{routine=’functicn_5') {aR) l":unr_urr{ntl]ntnEh.;;m] {[ “"*‘"“‘"'"”“‘Hm
express aT = Aetion{routine=' function T') (a8} I
dependen-
cies ax = Betion{routline=' function_X') {as5) | :|—"' e e
ayY = getion{routine=" function_Y"') {aX) CPU CFU CPU U
L & aa = Action{routine=' functicn_Z7) {[aT,a¥])
dut = ConcurrentDacaBnd(} (ai) i
express
hardware Caoncurrentlardware {CPU=(factians’ : [aR,a5,aT,8Z] ),
mapping | GPU=("acstiaons’: [aX,aY]])

10 Argonne

NATIONAL LABORATORY



Milhoja — domain specific runtime

O A Toolkit for Building Pipelines

CPECED

Distributors

Use block iterator

Aggregate blocks if necessary
Initiate asynchronous
transfers if necessary

Push blocks to other elements

Thread Teams

Team 1

Block \

Task Fcn A (CPU)

threads = 3 Data type

Computation to
apply to each data
item

Team 2

Packet of Blocks

Task Fcn B (GPU)
threads = 7

/

Number of threads in team
activated to apply action to
data items

11

Helpers

* Initiate asynchronous
transfers if necessary

*  Translate data types

DM/Unpack/
Splitter

Agg/DM

Data Parallel

Data Flow & Movement

Host-Side Thread Balancing

Arg

onne’

NATIONAL LABORATORY



Thread Team Configurations

 Expose Hierarchy of Parallelism

Single data-parallel pipeline configuration
CPU/GPU Data Parallel

Team 1

All Blocks, threads dile

FinestLevel, ~  _ _—=—=———"—"7"=
3 Threads - Task Fcn D (CPU)

e 209% threads = 3

GG Fil Data Parallel
Two-pipeline configuration Distributor

GPU-to-Host

Packet of Blocks

Team 1 Host-to-GPU
Loav e Tile Task Fen D (GPU)
caves, -7 threads = 7

All Levels, - o Task Fcn A (CPU)
2 Threads L7 . . threads = 3
]

Distributor

~o Task functions applied to each block
* in order within a pipeline and
* concurrently across pipelines.

GPU-to-Host ~~ <

Packet of Blocks

DM/Unpack/
sp|itrtjer Task Fen C (CPU)
N AyazeE threads = 0

Host-to-GPU e

- Task Fcn B (GPU)

Allow for running concurrently
threads Team 3 independent actions from different
physics units.

-
= — - e

1 Argonne

NATIONAL LABORATORY



Macroprocessor — unify static code

JIMimic the functionality of template meta-programming
Single source code with specializations for variants

ICode in building blocks

JThat can be permuted and combined

ISmaller building blocks can be fused into bigger ones for performance if
needed

Argonne‘)

NATIONAL LABORATORY



Modification in Configuration

Encoded metadata
Other compoments | need
Components | don’t work with
State variables | need
Runtime parameters | want ...

Config files
Lowest granularity -- subroutine

Express code with embedded
macros

Let macros have multiple

alternative definitions

Implement mechanism to select

specific macro definition

Implement mechanism to safely
Alternative include more than one definition
Implementations Allow inline, recursion and
arguments in macros

Sub components

y Argonne®

NATIONAL LABORATORY



Code Expressed with Keys
@M declare
@M directivel
@M loop_2d
.... computation 1
.... computation 2
@M endloop_2d_spl
@M directive2
@M loop_2d_spl
.... computation 3
@M endloop_2d

Common definitions

Definitions for CPU
[declare]

definition=

cpu-specific declarations
[directivel]

definition=

Hlomp directive for cpu
[endloop_2d spl]
definition=
[directive?2]
definition=
[loop_2d spl]
definition=

[loop 2d] [endloop_2d]
definition= definition=
do j=1,n end do

doi=1,m end do

Definitions for GPU

[declare]

definition=

gpu-specific declarations
[directivel]
definition=
lomp directivel for gpu
[endloop_2d_spl]
definition=
@M endloop 2d
[directive?2]
definition=
llomp directive2 for gpu
[loop_2d spl]
definition=
@M loop_2d

CPU
specific
definitions

GPU
specific
definitions

Macro-
processor

Common
definitions

Macro-
processor

cpu-specific declaration
llomp directive for CPU
do j=1,n
doi=1,m
.... computation 1
.... computation 2
.... computation 3
end do
end do

gpu-specific declarations
llomp directivel for GPU
do j=1,n
doi=1,m
.... computation 1
.... computation 2
end do
end do
llomp directive2 for GPU
do j=1,n
doi=1,m
.... computation 3
end do
end do

7 NATIONAL LABORATORY



If(telescoping) then
call gcfill
@M iter_begin
@M hy_save_state_1blk
@M hy_prepare_stages
do stage = 1,last_stage
@M hy_set_limits
@M hy_do_one_stage
if(stage==last_stage)
@M hy_update_state_1blk
endif
end do
@M iter_end
else
@M hy_save_global_state
@M hy_prepare_stages
do stage = 1,last_stage
Call Gcfill
@M iter_begin
@M hy _do_one_stage
@M hy_update_global_state
@M iter_end
end do
end if

[hy_do_one_stage]

definition =
call hy_grav (@M hy_grav_args)
call hy_getFaceFlux (@M hy ff args)
call hy_addFluxes(@M hy_af args)
call hy_updateSolution(@M hy us_args)
call Eos

Subroutine hy_getFaceFlux(@M hy ff args)
@M hy_ff_declare
do dir=1,NDIM
@M hy_set_loop
@M hy_start_loop
@M hy_fill_tmp_blk
@M hy_reconstruct
@M hy_riemann
@M hy_save_fluxes
@M hy _end_loop
end subroutine hy _getFaceFlux

Examples of CPU definitions

[hy start_loop]
definition =
@M loop_begin_2d(limits)

[hy_reconstruct]
definition =
call reconstruct(@M hy rec_args)

Examples of GPU definitions

[hy _set loop]
definition =

[hy_reconstruct]
definition =
@M loop_begin_3d(limits)
call reconstruct(@M hy rec_args)
@M loop_end_3d

Arg

onne®

NATIONAL LABORATORY



Unify expression of computation, setup tool and macroprocessor

* Alternative definitions/implementations
*  Arbitration on which one to pick

.

Static physics code
* Componentized

* Encoded with macros Source code

for physics
operators

Macroprocessor

Fully assembled
=P and configured
source code

Setup tool (arbitrate)

Platform specific information

Library of templates for time-
stepping

A

Source code
Recipe for for time
control flow ' stepping
in time and
stepping Interface to
Milhoja M"hPJa [ Executable ]
(runtime
library)

Setup tool (code assembley)

Compiler

Llinker

Human in the loop

Library of runtime pipelines

*  Figuring out the map *  Moving between devices
*  Expressing the map * Hiding latency of movement

Mechanism to map work to computational targets Mechanism to move work and data to targets A
€

LABORATORY



The Toolchain

JHas been developed to minimize direct knowledge of Flash-X
ISome will be released as stand-alone tools
IEach one operates essentially independently

JIMinimize the amount of recoding
JIn the code and in the tools

JA performance model to inform the optimizers




Porting to a new platform

JIn an ideal world
JAdd to the library of runtime pipelines
JAdd to the library of recipes templates
JAdd to the knowledge base of the performance model

JIn real world
JAdd variants for some solvers with alternative definitions of macros

JIn the worst case

IDevelop new algorithms and add whole alternative implementation for some
solvers

Argonne‘)

NATIONAL LABORATORY



