
Argonne National Laboratory

Performance Portability
Without Relying on C++
Based Abstractions

PERMAVOST Workshop Orlando 2023

Anshu Dubey

Contributors: Tom Klosterman, Jared O’Neal, Johann Rudi
Mohamed Wahib, , Klaus Weide

acknowledgements
This work was supported by the U.S. Department of Energy Office of

Science, Office of Advanced Scientific Computing Research (ASCR),
and by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This work was performed in part at the Argonne National Laboratory,
which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357

2

Starting Point in Extensible Software Architecture

Building blocks of code
Hierarchy of granularity

Units, subunits, components

Multiple alternative implementations
Null implementations of API

High degree of composability

High degree of customizability

A tool that can arbitrate on what to include when
Self describing code components

3

Config file for the gravity module. Available sub-modules:

Constant Spatially/temporally constant gravitational field
PlanePar 1/r^2 field for a distant point source
PointMass 1/r^2 field for an arbitrarily placed point source
Poisson Field for a self-gravitating matter distribution
UserDefined A user-defined field

REQUIRES Driver
DEFAULT Constant
PPDEFINE GRAVITY
EXCLUSIVE Constant PlanePar PointMass Poisson UserDefined
PARAMETER useGravity BOOLEAN TRUE

The Key to Composability
Encoded metadata

Units I need
Units I don’t work with
State variables I need
AMR specific needs

Runtime parameters I want …

setup

Alternative
Implementations

Config files

Sub components

5

Platform Heterogeneity

Computation Memory Network

CPU GPU

Other
acceler-

ators

Other
devices

Cache
hierar-

chy

Device
memory

NVram
Other
types

Between
nodes

Within
node

With I/O
Other
types

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and data
to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

So what do we need?

• Abstractions layers
• Code transformation tools
• Data movement orchestrators

Philosophy of Design

Let the code developer decide what should be done for
optimization on a platform
Make it easy to have that happen without coding to metal

Have a set of tools, each with limited functionality
Tools remain simple and easy to maintain by non-experts
Combination of tools provides a powerful solution

Tools can permute and combine building blocks, do some code
translation and compose a full application

As far as possible tools also have building blocks

8

CGkit
 Generating Code from Recipes and code Templates

Source Tree
Tool

Control Flow
Tool

Recipe Tool
(DSL Parser)

recipes (DSL)
written by
humans

templates
(FORTRAN or

C/C++)

source code
for time
stepping

9

CGkit
 Generating Code from Recipes and code Templates

Source Tree
Tool

Control Flow
Tool

Recipe Tool
(DSL Parser)

recipes (DSL)
written by
humans

templates
(FORTRAN or

C/C++)

source code
for time
stepping

Example recipe Resulting control flow graph

express
dependen-

cies

express
hardware
mapping

Orthogonal
separation
of concerns

10

Milhoja – domain specific runtime

 A Toolkit for Building Pipelines

Distributors
• Use block iterator
• Aggregate blocks if necessary
• Initiate asynchronous

transfers if necessary
• Push blocks to other elements

Helpers
• Initiate asynchronous

transfers if necessary
• Translate data types

Computation to
apply to each data
item

Data type

Number of threads in team
activated to apply action to
data items

Thread Teams

11

 Expose Hierarchy of Parallelism

Task functions applied to each block
• in order within a pipeline and
• concurrently across pipelines.

Allow for running concurrently
independent actions from different
physics units.

Single data-parallel pipeline configuration
CPU/GPU Data Parallel

Two-pipeline configuration

Thread Team Configurations

12

Macroprocessor – unify static code

Mimic the functionality of template meta-programming
Single source code with specializations for variants

Code in building blocks
That can be permuted and combined

Smaller building blocks can be fused into bigger ones for performance if
needed

13

Modification in Configuration

14

Encoded metadata
Other compoments I need

Components I don’t work with
State variables I need

Runtime parameters I want …

Express code with embedded
macros

• Let macros have multiple
alternative definitions

• Implement mechanism to select
specific macro definition

• Implement mechanism to safely
include more than one definition

• Allow inline, recursion and
arguments in macros

Lowest granularity -- subroutine
setup

Alternative
Implementations

Config files

Sub components

Definitions for CPU
[declare]

definition=
cpu-specific declarations

[directive1]
definition=
!!omp directive for cpu

[endloop_2d_spl]
definition=

[directive2]
definition=

[loop_2d_spl]
definition=

Code Expressed with Keys
@M declare
@M directive1
@M loop_2d

…. computation 1
…. computation 2

@M endloop_2d_spl
@M directive2
@M loop_2d_spl

…. computation 3
@M endloop_2d

Definitions for GPU
[declare]
definition=

gpu-specific declarations
[directive1]
definition=
!!omp directive1 for gpu

[endloop_2d_spl]
definition=

@M endloop_2d
[directive2]
definition=

!!omp directive2 for gpu
[loop_2d_spl]
definition=

@M loop_2d

Common definitions
[loop_2d] [endloop_2d]

definition= definition=
do j=1,n end do

do i=1,m end do

cpu-specific declaration

!!omp directive for CPU

do j=1,n

do i=1,m

…. computation 1

…. computation 2

…. computation 3

end do

end do

gpu-specific declarations

!!omp directive1 for GPU

do j=1,n

do i=1,m

…. computation 1

…. computation 2

end do

end do

!!omp directive2 for GPU

do j=1,n

do i=1,m

…. computation 3

end do

end do

CPU
specific

definitions

GPU
specific

definitions

Common
definitions

Macro-
processor

Macro-
processor

If(telescoping) then
call gcfill
@M iter_begin

@M hy_save_state_1blk
@M hy_prepare_stages
do stage = 1,last_stage

@M hy_set_limits
@M hy_do_one_stage
if(stage==last_stage)

@M hy_update_state_1blk
endif

end do
@M iter_end

else
@M hy_save_global_state
@M hy_prepare_stages
do stage = 1,last_stage

Call Gcfill
@M iter_begin

@M hy_do_one_stage
@M hy_update_global_state

@M iter_end
end do

end if

[hy_do_one_stage]
definition =

call hy_grav (@M hy_grav_args)
call hy_getFaceFlux (@M hy_ff_args)
call hy_addFluxes(@M hy_af_args)
call hy_updateSolution(@M hy_us_args)
call Eos

Subroutine hy_getFaceFlux(@M hy_ff_args)
@M hy_ff_declare
do dir=1,NDIM

@M hy_set_loop
@M hy_start_loop

@M hy_fill_tmp_blk
@M hy_reconstruct
@M hy_riemann
@M hy_save_fluxes

@M hy_end_loop
end subroutine hy_getFaceFlux

Examples of CPU definitions

[hy_start_loop]
definition =

@M loop_begin_2d(limits)

[hy_reconstruct]
definition =

call reconstruct(@M hy_rec_args)

Examples of GPU definitions

[hy_set_loop]
definition =

[hy_reconstruct]
definition =

@M loop_begin_3d(limits)
call reconstruct(@M hy_rec_args)

@M loop_end_3d

Library of templates for time-
stepping

Se
tu

p
 t

o
o

l (
ar

b
it

ra
te

)

code for
target
device

Static physics code
• Componentized
• Encoded with macros

Platform specific information

Recipe for
control flow

in time
stepping

C
G

K
it

Source code
for time
stepping

and
Interface to

MilhojaLibrary of runtime pipelines

M
ac

ro
p

ro
ce

ss
o

r

Source code
for physics
operators

H
u

m
an

 in
 t

h
e

lo
o

p

Se
tu

p
 t

o
o

l (
co

d
e

as
se

m
b

le
y) Fully assembled

and configured
source code

Compiler
Llinker

Executable

Unify expression of computation, setup tool and macroprocessor
• Alternative definitions/implementations
• Arbitration on which one to pick

Mechanism to map work to computational targets
• Figuring out the map
• Expressing the map

Mechanism to move work and data to targets
• Moving between devices
• Hiding latency of movement

Milhoja
(runtime
library)

The Toolchain

Has been developed to minimize direct knowledge of Flash-X

Some will be released as stand-alone tools

Each one operates essentially independently

Minimize the amount of recoding
In the code and in the tools

A performance model to inform the optimizers

19

Porting to a new platform

In an ideal world
Add to the library of runtime pipelines

Add to the library of recipes templates

Add to the knowledge base of the performance model

In real world
Add variants for some solvers with alternative definitions of macros

In the worst case
Develop new algorithms and add whole alternative implementation for some

solvers

20

