
Argonne National Laboratory

Performance Portability
Without Relying on C++
Based Abstractions

PERMAVOST Workshop Orlando 2023

Anshu Dubey

Contributors: Tom Klosterman, Jared O’Neal, Johann Rudi
Mohamed Wahib, , Klaus Weide

acknowledgements
This work was supported by the U.S. Department of Energy Office of

Science, Office of Advanced Scientific Computing Research (ASCR),
and by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This work was performed in part at the Argonne National Laboratory,
which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357

2

Starting Point in Extensible Software Architecture

Building blocks of code
Hierarchy of granularity

Units, subunits, components

Multiple alternative implementations
Null implementations of API

High degree of composability

High degree of customizability

A tool that can arbitrate on what to include when
Self describing code components

3

Config file for the gravity module. Available sub-modules:

Constant Spatially/temporally constant gravitational field
PlanePar 1/r^2 field for a distant point source
PointMass 1/r^2 field for an arbitrarily placed point source
Poisson Field for a self-gravitating matter distribution
UserDefined A user-defined field

REQUIRES Driver
DEFAULT Constant
PPDEFINE GRAVITY
EXCLUSIVE Constant PlanePar PointMass Poisson UserDefined
PARAMETER useGravity BOOLEAN TRUE

The Key to Composability
Encoded metadata

Units I need
Units I don’t work with
State variables I need
AMR specific needs

Runtime parameters I want …

setup

Alternative
Implementations

Config files

Sub components

5

Platform Heterogeneity

Computation Memory Network

CPU GPU

Other
acceler-

ators

Other
devices

Cache
hierar-

chy

Device
memory

NVram
Other
types

Between
nodes

Within
node

With I/O
Other
types

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and data
to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

So what do we need?

• Abstractions layers
• Code transformation tools
• Data movement orchestrators

Philosophy of Design

Let the code developer decide what should be done for
optimization on a platform
Make it easy to have that happen without coding to metal

Have a set of tools, each with limited functionality
Tools remain simple and easy to maintain by non-experts
Combination of tools provides a powerful solution

Tools can permute and combine building blocks, do some code
translation and compose a full application

As far as possible tools also have building blocks

8

CGkit
 Generating Code from Recipes and code Templates

Source Tree
Tool

Control Flow
Tool

Recipe Tool
(DSL Parser)

recipes (DSL)
written by
humans

templates
(FORTRAN or

C/C++)

source code
for time
stepping

9

CGkit
 Generating Code from Recipes and code Templates

Source Tree
Tool

Control Flow
Tool

Recipe Tool
(DSL Parser)

recipes (DSL)
written by
humans

templates
(FORTRAN or

C/C++)

source code
for time
stepping

Example recipe Resulting control flow graph

express
dependen-

cies

express
hardware
mapping

Orthogonal
separation
of concerns

10

Milhoja – domain specific runtime

 A Toolkit for Building Pipelines

Distributors
• Use block iterator
• Aggregate blocks if necessary
• Initiate asynchronous

transfers if necessary
• Push blocks to other elements

Helpers
• Initiate asynchronous

transfers if necessary
• Translate data types

Computation to
apply to each data
item

Data type

Number of threads in team
activated to apply action to
data items

Thread Teams

11

 Expose Hierarchy of Parallelism

Task functions applied to each block
• in order within a pipeline and
• concurrently across pipelines.

Allow for running concurrently
independent actions from different
physics units.

Single data-parallel pipeline configuration
CPU/GPU Data Parallel

Two-pipeline configuration

Thread Team Configurations

12

Macroprocessor – unify static code

Mimic the functionality of template meta-programming
Single source code with specializations for variants

Code in building blocks
That can be permuted and combined

Smaller building blocks can be fused into bigger ones for performance if
needed

13

Modification in Configuration

14

Encoded metadata
Other compoments I need

Components I don’t work with
State variables I need

Runtime parameters I want …

Express code with embedded
macros

• Let macros have multiple
alternative definitions

• Implement mechanism to select
specific macro definition

• Implement mechanism to safely
include more than one definition

• Allow inline, recursion and
arguments in macros

Lowest granularity -- subroutine
setup

Alternative
Implementations

Config files

Sub components

Definitions for CPU
[declare]

definition=
cpu-specific declarations

[directive1]
definition=
!!omp directive for cpu

[endloop_2d_spl]
definition=

[directive2]
definition=

[loop_2d_spl]
definition=

Code Expressed with Keys
@M declare
@M directive1
@M loop_2d

…. computation 1
…. computation 2

@M endloop_2d_spl
@M directive2
@M loop_2d_spl

…. computation 3
@M endloop_2d

Definitions for GPU
[declare]
definition=

gpu-specific declarations
[directive1]
definition=
!!omp directive1 for gpu

[endloop_2d_spl]
definition=

@M endloop_2d
[directive2]
definition=

!!omp directive2 for gpu
[loop_2d_spl]
definition=

@M loop_2d

Common definitions
[loop_2d] [endloop_2d]

definition= definition=
do j=1,n end do

do i=1,m end do

cpu-specific declaration

!!omp directive for CPU

do j=1,n

do i=1,m

…. computation 1

…. computation 2

…. computation 3

end do

end do

gpu-specific declarations

!!omp directive1 for GPU

do j=1,n

do i=1,m

…. computation 1

…. computation 2

end do

end do

!!omp directive2 for GPU

do j=1,n

do i=1,m

…. computation 3

end do

end do

CPU
specific

definitions

GPU
specific

definitions

Common
definitions

Macro-
processor

Macro-
processor

If(telescoping) then
call gcfill
@M iter_begin

@M hy_save_state_1blk
@M hy_prepare_stages
do stage = 1,last_stage

@M hy_set_limits
@M hy_do_one_stage
if(stage==last_stage)

@M hy_update_state_1blk
endif

end do
@M iter_end

else
@M hy_save_global_state
@M hy_prepare_stages
do stage = 1,last_stage

Call Gcfill
@M iter_begin

@M hy_do_one_stage
@M hy_update_global_state

@M iter_end
end do

end if

[hy_do_one_stage]
definition =

call hy_grav (@M hy_grav_args)
call hy_getFaceFlux (@M hy_ff_args)
call hy_addFluxes(@M hy_af_args)
call hy_updateSolution(@M hy_us_args)
call Eos

Subroutine hy_getFaceFlux(@M hy_ff_args)
@M hy_ff_declare
do dir=1,NDIM

@M hy_set_loop
@M hy_start_loop

@M hy_fill_tmp_blk
@M hy_reconstruct
@M hy_riemann
@M hy_save_fluxes

@M hy_end_loop
end subroutine hy_getFaceFlux

Examples of CPU definitions

[hy_start_loop]
definition =

@M loop_begin_2d(limits)

[hy_reconstruct]
definition =

call reconstruct(@M hy_rec_args)

Examples of GPU definitions

[hy_set_loop]
definition =

[hy_reconstruct]
definition =

@M loop_begin_3d(limits)
call reconstruct(@M hy_rec_args)

@M loop_end_3d

Library of templates for time-
stepping

Se
tu

p
 t

o
o

l (
ar

b
it

ra
te

)

code for
target
device

Static physics code
• Componentized
• Encoded with macros

Platform specific information

Recipe for
control flow

in time
stepping

C
G

K
it

Source code
for time
stepping

and
Interface to

MilhojaLibrary of runtime pipelines

M
ac

ro
p

ro
ce

ss
o

r

Source code
for physics
operators

H
u

m
an

 in
 t

h
e

lo
o

p

Se
tu

p
 t

o
o

l (
co

d
e

as
se

m
b

le
y) Fully assembled

and configured
source code

Compiler
Llinker

Executable

Unify expression of computation, setup tool and macroprocessor
• Alternative definitions/implementations
• Arbitration on which one to pick

Mechanism to map work to computational targets
• Figuring out the map
• Expressing the map

Mechanism to move work and data to targets
• Moving between devices
• Hiding latency of movement

Milhoja
(runtime
library)

The Toolchain

Has been developed to minimize direct knowledge of Flash-X

Some will be released as stand-alone tools

Each one operates essentially independently

Minimize the amount of recoding
In the code and in the tools

A performance model to inform the optimizers

19

Porting to a new platform

In an ideal world
Add to the library of runtime pipelines

Add to the library of recipes templates

Add to the knowledge base of the performance model

In real world
Add variants for some solvers with alternative definitions of macros

In the worst case
Develop new algorithms and add whole alternative implementation for some

solvers

20

