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Why Data Access ?

The Memory-wall Problem

Gnosis
Research
Center

= Processor performance
increases rapidly

o Uni-processor: ~52%
until 2004

o Aggregate multi-
core/many-core
processor performance
even higher since 2004

= Memory: ~7% per year

o Storage: ~6% per year

= Processor-memory speed gap
keeps increasing

Source: Intel

Moore’s law?." Science 368.6495 (2020).
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Silicon Area Distribution

o * 1989 the first Intel processor
with on-chip L1 cache was
Intel 486, 8KB size

Power Distribution « 1995 the first Intel processor

Random  Memory
2% 9%

Routers
3%

Processors
3%

with on-chip L2 cache was
Intel Pentium Pro, 256KB size
« 2003 the first Intel processor
with on-chip L3 cache was
Intel ltanium 2, 6MB size
« 1980: no cache Iin micro-

Memory
86%

« Modern microprocessors such as processor; 2010: 3-level
the Pentium Pro, Alpha cache on chip, 4-level cache
21164, Strong Arm SA110, and off chip

Longson-3A use 80% or more of
their transistors for the on-chip
cache

Source: Computer Architecture A Quantitative Approach

Courtesy of Peter Kogge, UND
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4 Memory-Bound & Scaling Function sunnis Law)
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perf(r) m-perf(r) Ve Tm-w, — (= Y mf scalable, -if dat.a
We o, Mp W, + W, access time is
perf(r)  perf(r) " fixed and does not
fr="o= increase with the
We T Wp amount of work &

| | | the number of
X.-H. Sun and Y. Chen, "Reevaluating Amdahl's Law in the Multicore Era," Journal of
Parallel and Distributed Computing, vol. 70, no. 2, pp. 183-188, Feb. 2010 cores



4 Compute and Memory Performance

Roofline Model:
Attainable GFLOP /s = min{peak GFLOP/s,0I - peak GB/s}

GFLOPs/S
Performance

* System Performance depends on
both Compute and Memory
Performance, the ratio of the two
defines the Machine Balances (Mb)

* Different Applications have different
Operational Intensities (Ol)

_ Numof FLOP
~ Num of Byte

Peak computing perf.

7 iCompute Bounded Region

Machine Balance
_ peak GFLOP/s

peak GB/s

log-log plot FLOPs/Byte
Operational Intensity

Use the scaling function G(pM) in memory-bound as the Micron E. Confalonieri, IEDM Short Course 2024

Operational Intensities (Ol)
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The @’deepseek Example: data-access optimization

n DeepSeek MoFE uses smaller, fine-grained experts to enhance data parallelism

m MoFE Expert Routing ensures load balance and prevents parallelism
inefficiencies

m Optimized pipeline & overlapping hide data movement latency
n All-to-All Communication Optimizations mitigate the data movement overheads

n Memory-Efficient Training & FP8 Mixed Precision reduce memory
requirements and mitigate data movement pressure

m Still: DeepSeek inference spends 12x more time on data access than of
computing time

Computation

Communication

Time -

A Forward chunk A Backward chunk

Overlapping strategy for a pair of individual forward and backward chunks

DeepSeek-V3 Technical Report
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Just Buy More DRAM

7y < Only 20% of memory

74
PEC YN used in 20% of time

u The Memory-wall
| , DRAM has a problem
o very high
DRAM is very energy cost Larger memory means
expensive longer searching time
Price Capacity S/GB
40x more
expensive
than NVM
an © Simply increasing DRAM is

not sustainable!
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‘,/ Existing Solution: ASIC from CPU side

= GPU, DSP, Al Chip

o GPU is a chip tailored to graphics processing,
DSP is for signal processing, and Al chip is
designed to do Al tasks

= Limited solution

o Assume data are on the chip

= Limited application

o Computation Accelerator

o Please recall our memory-bound results for
multicore

Data cache

Inst cache

The Traditional Approach: Memory Hierarchy
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= PIM

o Processing in memory (also called
processor in memory) is the integration of
a processor with RAM on a single chip.

o NDP (Near-memory Data Processing)
o ISP (In-Storage Processing)

s Computer power 1s weak
o A full kitchen needs a refrigerator

» Limited application
o Data movement reducer

o A helper/mitigator How to use it?
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= Can we make the von Neumann machine data efficient?

= Yes: focus on data and data access delay (data centric)

s How: Advancing current memory-wall solutions

Computing PN Data Movement/ © Memory/Storage
Unit Management Unit
Memory System Storage System
Control Arithmetic [
S o Computing System
u puting Sy

The Problem
is in the
Research Middle

s System
Research

“*Big Data/Al
Systems

“*High
Performance
Computing
Data Systems
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" Dataflow under the von Neumann Machine

Memory Stall Time (MST)

CPU.time = IC X (CPl¢ye + Memory stall time ) X Cycle.time

Reduce the Memory Stall Time to minimum

mmmmm o m_____ m_____ m_____ ||
Gase #4 ‘;;=-=-i-=_-Déi-‘:-i-‘:-i-i-?-ﬂ::‘_:‘_:‘_f! 1 :
| L] ] ] i
e I "B |
Processor : ‘ ‘ : Off-chip
side | - >— ' : side
=n____ |
|
|
|
|
—————————————————————————— 4
Layer 2 Layer 3 Layer 4
(including in place computing) Utilize current memory system
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‘/// New Disruptive under Existing System: =
Integration & Concurrency

Multi-Issue Out-of-Order Execution
. Multi-Threading /Processor Speculative Execution
= Advanced solution: Deep Vulticore /. Registers \  Runahead Execution
Memory/IO Hierarchy /_\ pipelined Cache
o New technologies and Multi-Level Cache LLzl gaas:: \ Non-Blocking Cache
complexities Multi-Banked Cache / 13 Cache Data Prefetching

Write Buffer

o Locality and Concurrency |
Pipeline
Multi-Channel Non-Blocking
Main Memory (DRAM)

Multi-Rank Prefetching
Our Idea: /

Multi-Bank Persistent Memory (NVRAM) Write Buffer
Integrated Memory System via

Data Access Concurrency / Elash-Based SSD \

/ HDD \

/ Archival Storage (Tapes, ...) \

Current Deep Memory-Storage Hierarchy

with Concurrence

Challenges: Currency, Integration, environment,
technology, etc.

Parallel File System (e.g., disks)
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[// C-AMAT: Concurrent Data Access fundamental

AMAT = H, + MR, X AMP,

Where AMP, = (H, + MR, X AMP,)

= C-AMAT is Recursive

Where: o
C-AMAT =—+ MR x k, x C-AMAT,
Hl
C — AMAT, =CI:172+MR2 X i, X C — AMAT,
2

= H: the hit time K, = PMR, y PAMP, y C,
= MR: the miss ratio MR,  AMR C, A lot of
= Cy: the hit concurrency Room in data

Concurrency

= K: the overlapping ratio (pure miss cycles over miss cycles)

= A pure miss cycle 1s a miss cycle with no hit

Concurrence & locality are equally important

Sun, Xian-He, and Dawei Wang. "Concurrent average memory access time." IEEE Computer 47, no. 5 (2014): 74-80.
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Memory Cycles
1 2 3 4 5 6 7 8 9 10 11 12 13

A . e
| aZI 7 1:! | i i
A | _J I 4X(1)

Cach?_ Level 2 Cache Level 1

- ;E(ZJ H(2> ..... m) ............. %‘. s | )

>

L1 pure misses cause CPU stall

From concurrence-supported locality
To Concurrence-aware Locality, & Locality-aware concurrence,
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Design ;

* Pure Miss Contribution (PMC) S—
* Pure miss is more important than miss N o e it
* Pure miss has weight (pure miss cycles) E-—A’—LHH—_FI—J-
*  PMC is the number of pure miss cycles Compare b wiss ] T—
*  PMC can be measured by monitoring MSHR occupancy | PMC Measurement Logic 1

« PMC is Predictable il

Access Detector (AD)

l

Pure Miss Detector

*  PMC values of the misses caused by the same Program Counter
(PC) are relatively stable

(PMD)
PMC Calculation Unit
(PCU)
I
12 ELRU B SHiP++ lHawkeye Glider ®Mockingjay WCARE - ==e==ee- b
= 1.15 a ) ~
2 1b 39, '3 0% 17 1% PMC Measurement Structure
_.:3 1.1
% 1.05 12 HLRU wm SHiP++ l Hawkeye Glider m Mockmg]ay m CARE
E
= 1505
o 1
: 1h 3%
2 0.95 11
09

4-core 8-core 16-core

IPC Normalized to LRU
[
=)
= ;

o
i
>

’I%ﬁo% |171°/.

4-core 8-core 16-core

SPEC & GAP Workloads

0.9
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Action: Concurrency-Aware Holistic Cache Management

CHROME:

* Integrates cache bypassing and replacement with pattern-based prefetching
*  Dynamic Online Learning: for varying workloads and system configurations
e Multiple Program Features for understanding of memory access patterns

e Concurrency-Aware Rewards for concurrent accesses (C-AMAT model)

14 m Hawkeye =EGlider @ Mockingj ay O CARE ICHﬁOME
12 , 10 6% \ 9/12.9%

i 92%

|‘[I DHI CHROME outperforms state-of-the-
art cache management schemes
[ .D l. I.D — Effective across both SPEC and GAP

4-core 8-core 16-core

Percentage Speedup
over LRU
o
[

A N @

memory-intensive workloads

18 mHawkeye mGlider @Mockingjay 0 CARE mCHROME — Demonstrates strong scalability

15 y 12 1% { 116.0%
12 5% /

-IDHI IIDHI llﬂ

4-core 8-core 16-core

Percentage
Speedup over LRU
o

S W
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Action: Concurrency-Aware SpMM Accelerator

ACES : Concurrency-Aware SpMM Accelerator

* Adaptive Execution Flow: better software concurrency

* Non-Blocking (NB) Buffer: better hardware concurrency

* Concurrency-Aware Cache Replacement: Considers Reuse Distance (RD) and Fiber
Density (FD), allows all cache lines of a row to be accessed concurrently without any
misses

ai3. 13.0 15.9

e
[y
© O
o O

BESIGMA
OSpArch

72 SPADA
m ACES
wv GM

M &
©o oo

AARRRRR)
\\\\\\\'

ﬁJJJmﬂjéﬁﬁjjjﬂjn

of pg rc sc

Normalized Speedu

o
o
£
g
=

* ACES consistently provides optimal performance across all workloads

« 25.5X over SIGMA, 8.9 X over SpArch, and 2.1 X over SPADA

* Non-Blocking (NB) Buffers enable greater concurrency support

* Concurrency-aware cache replacement policies further exploit this hardware-supported
parallelism
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System OptlmIZ ation: Layered Performance Matching \ Conter
(LPM)

m If each layer’s performance is matched, then we get the top layer’s
performance and the lowest layer’s capacity

m The Matching ratio values of request and supply at each layer are given
and the matching process 1s well designed & analyzed

« w(1)=ICf, C-AMAT(1)

| 3 il 1 IL1 C?Che il s B |
v v \ A/ v v
= — a(2) = a(1) py(1) A2) =JA(1) Pm(l)

— w(2) = (1) w(1) v(2) = APC(2)

+ + iI.2 Cache ‘ . |

v e

| . 8 =2 pal2) N A(3) = A(2) paf2)
«— w(3) = p(2) w(2) v(3) = APC(3)

. L3 Cache " |
v v
S S a(4) = a(3) pm(3) A(4) = A(3) pm(3)

<« w(4) = u(1) w(3) v(4) = APC(4)
[ Main Memory |

Simulatable==) Measurable m=) Controllable ==) Optimizable

Y. Liu and X. Sun, "LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching Perspective," in
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 11, pp. 2478-2493, 1 Nov. 2019.
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A Matching Example (increase performance)

LPMR = “oexeJmen (1)

= Assume:

Cycleqpy; =2 ns

Cycle,,,,, = 8 ns

fioo =20%

IPC,,=2.5

APC=1
= Then:

* |n 8 ns, there is 1 memory cycle, and the data supply rate is:
APC * N_Cycle,,,, =1
* |n 8 ns, there is 4 cpu cycle, and the data request rate is:
]PCexe * N_CyCleCPU *fmem =2

» The data supply rate does not match the data request rate. We can improve
memory concurrency by adding memory banks or ports to increase data supply
ability to adjust the data supply rate. For example, increase APC from 1 to 2, so:

APC * N_Cycle,,,,, =2

= And the data supply rate matches with the data request rate.
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Matching from Another Angle (power consumpt

101N
LPMR = “cexeJmen (1)
= Assume:
Cycleqpy; =2 ns
Cycle,,,,, = 8 ns
foo =20%
IPC,,=2.5
APC=1
* Then:

= |n 8 ns, there is 1 memory cycle, and the data supply rate is:
APC* N Cycle,,, =1

mem

* |n 8 ns, there is 4 cpu cycle, and the data request rate is:
IPC,..* N_Cyclecpy * frnem =2
= So:
= The data supply rate does not match the data request rate. We can decrease the
CPU frequency (increase CPU cycle) to adjust the data request rate. For
example, increase the CPU cycle from 2 ns to 4 ns, the N_Cycle,, would be 2, so:

IPCexe * N_CyCIeCPU *fmem =1

* And the data request rate matches with the data supply rate.
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Case Study: Put PIM into the Formula

Memory Stall Time (MST)
CPU.time = IC X (CPloyxe + Memory stall time ) X Cycle.time

CPU.time = [Cgyge X (CPloye + Memory stall time ) X Cycle.time
+ ICpim X (CPlyim + PIM stall time) X Cycle.timep;,- Overlapping

= PIM is a way to reduce request and is a trade-off of computing and MST

m Use Pure Miss as a indicator for offloading
= Result: data movement cost decides where to do the computing

OPElI B GraphPIM HCoPIM

o
=]
X

" Speedup by
19.5% than PEI
u h {”h “ {h with 51.1% fewer
o T o e A offloaded

BFS PR SP BFS PR SP BFS PR SP BFS PR SP |BFS PR SP N Stru Cth ns

pr Gnutella30 com-DBLP com-Youtube wiki-Talk soc-Livelournall

Percentage of offloaded instructions into memory 2
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Case Study 4: The Intel Optane Technology

Manufacture hardware integration (matching)

Challenges

Data access 1s application dependent
Hardware elasticity

Global optimization
OS, etc.

An architecture ahead of time?

MEMORY 10s GB

DRAM  <100ns
_ HOTTIER
PERSISTENT MEMORY e
MEMORY m gy NG )/ 100 G
= 1sTB
SECRESE IMPROVING ’ = <10psecs
STORAGE " @ormanen INTEL° QLC 30 NAND $SD 10s T8
Improve Performance DE”VERING <100usecs

/

ey e o
HPIR[][IAEBE <10 msecs

INTEL" 30 NAND $SD

Deliver Efficient Storage

HOD/TAPE

N. Zhang, B. Toonen, X-H. Sun, B. Allcock, “Performance Modeling and Evaluation of a Production Disaggregated Memory System,”
International Symposium on Memory Systems (MEMSYS'20), Sept. 2020

Case Study
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Dataflow under the von Neumann Machine

» Use LPM to utilize the memory system performance
o Identify the number of layers and carry matching at each layer
m  Use C-AMAT (concurrency) and others to perform the matching
u  Goal: Dataflow from the source to compute unite with minimum stall

—j

Processor

Off-chip
side

side

It is feaSib Ie - Parallel File System (e.g., disks)
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v The Dataflow,, Complexity
Possible Ways to Match

® Reduce request
O Improve locality, processing-in-memory (PIM) & in place
computing, algorithm improvement, data movement reducer, etc.

® Improve supply

O Improve data access concurrency , buffer, new technology, etc.

¥ Mask the difference

O Overlapping computing with data access delay (pure miss), prefetch,
etc.

® A more balanced design, etc.

Hardware technology, compiler technology, application algorithm
designs, system scheduling, system support, co-design, integration, etc.
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/' Action: Towards a Unified Memory-centric Comp 3
System with Cross-layer Support

- -

\ P

No delay data access: An integration of memory, storage, architecture (PIM, NDP.
CXL, etc), OS, compiler, runtime systems

* Is your new device/
technology helpful?

 How should they be
used together?

|
|
|
|
|
|
| Off-chip
1 Proces side
[ PE I sor
NDP : I side
@ ; I
Q] /’ T | I
| @2 @) |
w. '
: : e e d &8 & o _B=m
PE [r-ermemsmemieemamiem s e + PE
1 2 3
New advances in Dataflow under the von Neumann machine

computer architecture
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Buftfering System

OCI-1835764
CSSI: Frameworks

= Storage as a layer of the memory hierarchy
= Selective cache, data concurrency, matching Anthony Kougkas
» Independent management of each tier

= Optimized Access Latency, Throughput, Capacity, Network topology, etc.

I/0 buffering requests
FAN N TN

L3 Cache

¥ | mainMemory
(DRAM)
\ 4

Persistent Memory A\
(NVRAM)

Flash-Based SSD

Shared Burst Buffers

7
Capacity

v .., SATA SSD
HDD \ ey ) NS
M Archival Storage (Tapes, .. \ Parallel or Distributed File System
(e.g., arrays of HDD)
DMSH with Concurrence v

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O Acceleration via Multi-Tiered Data Buffering and Prefetching,” Journal of Computer Science and Technology, vol. 35, no. 1, pp. 92-120, Jan. 2020
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= Application-aware multi-tier optimization
m Complexity in software development
m Complexity in decision making
= An example of memory/storage integration
» An implementation of the
layered matching and data flow concept
Lack of existing
) Lacl_< of software for
intelligent managing tiers
data of
placement in heterogeneous
DMSH buffers.
Lack of .
automated Lack of native L?::,ﬂ::ﬂi::.se
data retrieval buffering :
and ol supportin
Complex data placement movement - HDF5.
among the tiers of adeep  Betweentiers -
memory and storage Independent
hierarchy management of each tier

of the DMSH

A. Kougkas, H. Devarajan, and X.-H. Sun, “Bridging Storage Semantics using Data Labels and Asynchronous 1/0,” ACM
Transactions on Storage, Vol 16, No 4, 2020
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Technical Preparation

Offer data W
Hermes introduce

several independent

technologies ML-driven
Auto-Tuning

HReplication

Explore our code at
https://github.com/grc-iit.

System
. : HCompress
github.com/grc- Profiler -
iit/hfetch
- HStreamin
P
. - _ QithUb.Com/qu' qithub_com/qrc-
github.com/grc-iit/hreplica  jit/hcompress it/hflow

ML-driven Auto-Tuning and Auto-Configuration: N. Rajesh, K. Bateman, S. Byna, J. L. Bez, A. Kougkas,
X.-H. Sun. “TunlO: An Al-powered Framework for Optimizing HPC 1/O”, IEEE IPDPS 2024.



Other Hermes Tools and Services

= Application orchestrator!:

o schedules application’s access to Hermes in multi-tenant scenarios,
mitigating interference by shared buffers.

= System telemetry?:
o captures in real-time the status of tiers (e.g., load, remaining capacity, etc.,) to enable
efficient data placement by Hermes.
= Application 1/O profiling?:
o classifies the I/O phases of applications to enable optimal Hermes configuration tuning
based on incoming access patterns.
= Hermes Container Library*:

o implements STL-like data structures (maps, list, etc) that can be distributed across nodes
and within available storage tiers.

= Resource Management?:

O provision and allocate the best storage hardware resources available based on application
demands and QoS guarantees

m The Memory Management System

1.A. Kougkas, H. Devarajan, X-H. Sun, and J. Lofstead. “Harmonia: An Interference-Aware Dynamic I/0 Scheduler”, In [EEE International Conference on Cluster Computing 2018
(Cluster’18)

2.N. Rajesh, H. Devarajan, J. Cernuda Garcia, K. Bateman, L. Logan, J. Ye, A. Kougkas, and X-H. Sun. 2020. “Apollo: An ML-assisted Real-Time Storage Resource Observer”. In 30th
International Symposium on High-Performance Parallel and Distributed Computing (HPDC21)

3.Hariharan Devarajan, Anthony Kougkas, P. Challa, Xian-He Sun, “Vidya: Performing Code-Block I/O Characterization for Data Access Optimization” In IEEE International Conference
on High Performance Computing, Data, and Analytics 2018 (HiPC’18)

4.H. Devarajan, A. Kougkas, K. Bateman, and X-H Sun. "HCL: Distributing parallel data structures in extreme scales." In 2020 |IEEE International Conference on Cluster Computing

LuxlO: Intelligent Resource Provisioning and Auto-Configuration for Storage Services
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Blurring the Line of Memory & Storage

» Storage has emerged with similar

Block Bandwidth: 120MBps
Device D performance to DRAM R
- o * E.g., Compute Express Link
Namespace | S eae: (CXL) is emerging and allows
= . storage to be accessed as
Addressable memory

« We can combine DRAM and
~ storage into a tiered and
Node N . portable distributed shared

| |
| | |
l L !
I L
I | I =
& | | ranko | Ranks \ / RankR | RankRe1 memory (DSM) abstraction
|
| /\
@ |
(= I | |
g Il Page 0 Page 1 I : Page P Page P+1
: T i I i
T | [DRAM_ | || [DRAM
9 L e "
s : I : CXL
o | [HoD | ! | [HoD ]

L. Logan, X.-H. Sun, A. Kougkas, “MegaMmap: Blurring the Boundary Between Memory and Storage for Data-Intensive Workloads”,
in the Proceedings of IEEE/ACM SC'24, Atlanta, USA, Nov. 17-22, 2024.
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Compui e Bluewaters Storage
System

PERCS Low-latency

Interconnect
Tape
Fibre Channel
IBM Blue Gene/P system at
Argonne National Laboratory.
S Interconnect
XTS5
Serial ATA InfiniBand .
Jobisee  16.Gbit/sec Seaart ;2,1:"
— 384
e losytesis
o
Application
High Level 1/0 Library [ PP } Jaguar XT5
maps application abstractions
onto storage abstractions and
rovides data portabili
4 poras 1/0 Middleware o
HDFS5, Parallel NetCDF Organizes accesses from fmg:@ Jaguar XT4
many processes, especially
those using collective /O Other
{_(viz, cw
1/0 Forwarding — R MPI-IO 5
Bridges between application [ 1/0 Forwarding ] —'I_L— - — —|—_| —
tasks and storage system Enterprise Storage Storage Nodes SION Network Lustre Router Nodes
i l:":f";‘:&“;:g:’” r:;\' l_pwau'alleﬂlﬂ!;le system provides conrétt.::llviw mnI ii:ﬂﬁll file syst:m
. panl ected rare mani between cl ware an
IBM ciod Parallel File System i !‘I F".‘ System via InfiniBand. incoming Fsualf?c'? resources and forward 1/0 operations
Maintains logical space and primarily carries from HPC clients,
provides efficient access to data 48 DataDirect 5249900 192 dual quad core storage traffic.
controller pairs with Xeon servers with 192 (XT5) and 48 (XT4)
[ 1 1 Tbyte drives 16 Gbytes of RAM each 3000+ port 16 Gbit/sec one dual core
and 4 InifiniBand infiniBand switch Opteron nodes with
L ) connections per pair complex 8 GB of RAM each

The 1/O
Software Stack

of Intrepid

Jaguar Storage System

Compute nodes Gateway nodes Commodity network Storage nodes Enterprise storage




Hermes System Results

Utilizing data access concurrence and memory hierarchy system with Multi-tiered I/O buffering

HPC Simulations and Big Data Analytics

\

N N

* Vector Particle-In-Cell * Gray-Scott reaction and

5 (VPIC) - diffusion models
g 10 » Write intensive simulation g 400 = Write intensive phase
'g = 3x faster than baseline (PFS) 8 300 =2.5x faster than baseline (PFS)
=
g 9 = 2.2x improvement compared to 3 200 = 1.7x improvement compared to
“ . single-tier buffering solutions. B0 single-tier buffering solutions.
0 0
PFS Burst  Hermes PFS Burst  Hermes
Buffers Buffers
) ) 14 . 500
* Particle clustering (BD- 12 * Gray-Scott Analysis EPFS  EHermes
- —. 400
CATS) & 10 =Read intensive phase e
. . . ] . =
= Read intensive analysis E 8 = 4x faster than baseline (PFS) % 300
» 2 .4x faster than baseline (PFS) z 6 5 200
z g
= 2x improvement compared to & 5 100
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Hermes System Results

Utilizing data access concurrence and memory hierarchy system with Multi-tiered I/O buffering

Cloud and ML Workloads

12 YCSB benchmark suite
o Memchaﬂ_ed = Rocks%

10 OHermes

[e4]

4

THROUGHPUT (KOPS)
o

0
A-load B-load C-load D-load

Performance superiority, using the same
resources, for a variety of cloud workloads:
A.Webserver

B.Email Server

C.DB queries
D.KVS get/put
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Hermes outperforms SparkML in distributed ML algorithms by more
than 3x highlighting the performance benefits of data tiering.

Hermes reduces DRAM usage by over 2x, enhancing data processing
capabilities without extra infrastructure overhead.




, After Hermes
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= Application and Collaboration
o Extended to Active (log) data: the ChronoLog project
Extended to Meta data: the Coeus project

- New application
o Extended to workflow environment, the Cloud environment New technology
Q

Extended to Al applications New environments

» Fundamental: Data centric system integration

0 Unified Memory-centric Computing System (UMC?2)
m  PIM, DPU, OS and compiler, memory/storage

o LABIO: a data-centric I/O system
»  LabStor and DTIO

» The next environment for Al: IOWarp

o Bending the I/O Fabric for Advancing AI-Infused Scientific
CCGric The 21th IEEE/ACM International Symposium
WO rkﬂOWS 5021 J ?gé:(lsu;;ezrbg::f;ud and Internet Computing
=  StoreHub doHE B

Best Paper Award
First Prize
DLIO: A Data-Centric Benchmark for Scientific
Deep Learning Applications
Presented o
Hariharan Devarajan, Huihuo Zheng, Anthony
| kas, Xian-He Sun and Venkatram Vishwanath

Laurent Lefevre Stacy Patterson Young Choon Lee
Program Chair, CCGrid 2021 ProgramChair, CCGrid 2021  Program Chair, CCGrid 2021
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[/ LABIOS Data Operation with Label

= Data requests are transformed 1nto (data) Label units
o A label 1s a tuple of an operation and a pointer to the data

= A dispatcher distributes labels to the workers
= Workers execute labels independently (i.e., fully decoupled)

apizinit()

api::fwrite()

apizget()

[
[
[ apizfread()
[
[

apiz:put()

api::labio_read()

api::labio_write()

Instructions—

Data—s

A. Kougkas, H. Devarajan, J. Lofstead, X.-H. Sun; “LABIOS: A Distributed Label-Based I/O System”, in Proceedings of ACM
HPDC ’19 (Best Paper Award)
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IOWarp: The Continuation

|IOWarp is a data management platform designed to address
the unique challenges in big data and Al applications

7/21/2025 Gnosis Research Centerlllinois Institute of Technology 37
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IOWarp: the Four Components

\
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Content Exploration

©)

Comprehensive querying and
indexing system and WarpGPT

Platform Plugins

(©)

Connecting external tools and
services

Content Assimilation Engine

(©)

Convert diverse data formats
into Content

Content Transfer Engine

(@)

Manage efficient data transfer

User
Prompt

f\\j

P1: Spawn a job on 100 nodes
weekly to run weather sim

P2: Given wthr.h5,
will there be a tornado next week?

—

/

loWarp
Frontend

_\/

Platform Plugins
Interface (PPI)

Al Agents

Scientific
MCPs

Content Exploration
Interface (CEIl)

Al Ag§n§

 Model
. Wei ghts KVCache

HDF5 | Adios | Slurm

PBS | Jarvis | Globus

{Podman|Grafana| Dask

MQE
Runs weather sim +
parses large H5 to

\get Al agent context

Q A \ Deta movement / /

IOWarp [|

[ /][

/

A\ A

Content Assimilation Engine (CAE)

Import from
External Slorage

Ingest Data Formats

&) aWSO

I_ H5 .l [_Adios_l Memory_i

:

loWarp

Backend

Content Transfer Engine (CTE)

Place content in
distributed
storage

Indirect

T NVMe R EXL

and memory HDD

HEM GPUDirect
DRAM
NVMe & CXL

f

HDD
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How Can You Get Involved?
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The |IOWarp organization is the primary contact point for
all IOWarp content https://github.com/iowarp

Inside, new users can:
e Get started quickly with our Installation Guides
https://github.com/iowarp/iowarp-install

e Explore the design and more complex features in the

Tutorial

Our code bases welcome collaborators:

Our Runtime, modular execution engine for custom storage and
data analytic pipelines.

Jarvis, a software deployment environment that abstract
hardware and shell complexities.

A collection of Scientific MCPs and an Exploration Engine
enabling a natural language interface to scientific data.

The Assimilation Engine, a framework for transforming diverse
format-specific data into an abstracted view called Content.
The Transfer Engine, a multi-tiered, dynamic, and distributed
I/O buffering system that manages all data movement and
placement.

0



Get Involved?

StoreHub
A Community Testbed

THE FUTURE oF
STORAGE RESEARCH

SHAPING THE NEXT GENERATION OF STORAGE
SYSTEMS — TOGETHER.




Path Forward: A Community-Driven Initiative
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Community-Centric Approach: Identified needs through surveys,

workshops (HDF User Group, PDSW, SSDBM), and direct conversations.
https://forms.gle/c6fmQkiSrCYWQMij9

Build vital infrastructure using community insights.
StoreHub is the nation's premier testbed for storage technologies.

https://grc.iit.edu/research/projects/storehub/

e Pioneering Research: Enabling
breakthroughs in data
management and storage
research.

e Broader Impact: Enhancing
education, workforce
development, and fostering
collaboration.

Tur:uruéj

SHAPING THE NEXT GENERATI
OF STORAGE SYSTEMS-TOGETHER™ ™
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"’/ Take Home Messages

" Modeling is the foundation :
O From memory-bound to C-AMAT and LPM
O Understanding and Solution

¥ Solution: Dataflow under the von Neumann Machine

O Reduce data access time under current systems

O It 1s a new system paradigm based on performance modeling
" Deliverable: Scalable data management systems

OThe Hermes system for Dataflow,,

O Performance engineering & performance-guided system design
" Keywords:

O Data centric rethinking, Data system optimization, HPC4AI

® Challenges:

O Understanding and Support of data concurrency and system
integration (the ecosystem)

O Hardware/software co-design
O Infrastructure and testbed
Applications & Infrastructure



COHC]“ SiOll (scalable data management)

= A new computer paradigm is introduced for AI-DL & big data

o Dataflow under the von Neumann Machine

» Performance modeling and understanding 1s essential for the
success of Dataflow,,

» Current Success: the Hermes System
o Concurrent data access and system integration
= Ongoing Project: IOWrap
o Geared up for Al applications
o StoreHub: A community and community testbed

%O?T$% UNDER VON NEUMANpy ’ﬁfq’ Fop

<PF Cryy,
NE 4’6‘
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Dr. Kun Feng Eneko Gonzalez Xiooyang Lu

Research Software Engineer Research Software Engineer Research Professor
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Thank you
Any questions?

Al & Data: Challenge & Opportunity in Computer System Research

Xian-He Sun
The Gnosis Research Center at the lllinois Institute of Technology

We would like to thank
our sponsors the

National Science
Foundation

sun(@iit.edu
www.cs.11t.edu/~scs




