
Dataflow under the von
Neumann Machine: A New

Paradigm for Computing Systems

Xian-He Sun

Illinois Institute of Technology
sun@iit.edu

Gnosis Research Center for accelerating data-driven discovery

PERMAVOST2025

7/21/2025 Gnosis Research CenterIllinois Institute of Technology 2

Source: Amazon Web Services

M
o

d
e

l S
iz

e

Time

MID
2017

Transformers
65M

2018

BERT
340M

2019

GPT-2
1.5B

MID
2019

GPT-2 8B
8.3B

LATE
2019

T5
11B

20209

Turing-NLC
17B

MID

GPT-3
175B

LATE
2021

Megatron-Turing
530B

2022

GPT-3 1T
1 trillion

Double every 4 months!

2023

GPT-4
1.8 trillion

The new Moors’ Law

The Computing & Data Disparity in AI

Courtesy of Tuo-Hung (Alex)Hou

Source: Nvidia

1

10

100

1000

10000

100000

1000000

10000000

1980 1985 1990 1995 2000 2005 2010 2015

Pe
rf

or
m

an
ce

Year

25%/year

52%/year
23%/year

12%/year

Memory

Uni-processor

Multi-core/many-core
processor

7%/year

60%/year

Leiserson, Charles E., et al. "There’s plenty of room at
the Top: What will drive computer performance after
Moore’s law?." Science 368.6495 (2020).

Why Data Access ? The Memory-wall Problem

 Processor performance
increases rapidly

 Uni-processor: ~52%
until 2004

 Aggregate multi-
core/many-core
processor performance
even higher since 2004

 Memory: ~7% per year
 Storage: ~6% per year

 Processor-memory speed gap
keeps increasing

Source: Intel

Source: OCZ

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

X.-H. Sun, and L. Ni, “Scalable Problems and Memory-Bounded Speedup,” Journal of Parallel and Distributed Computing, Vol. 19, 1993.
X.-H. Sun, and L. Ni, “Another View of Parallel Speedup,” Proc. of ACM-IEEE Supercomputing'90, NY, Nov. 1990

Page 4

Impact of Memory-Bound (-Wall)

Silicon Area Distribution

Memory
86%

Processors
3%

Routers
3%

Random
8%

Power Distribution

Memory
9%

Processors
56%

Routers
33%

Random
2%

Courtesy of Peter Kogge, UND

• Modern microprocessors such as
the Pentium Pro, Alpha
21164, Strong Arm SA110, and
Longson-3A use 80% or more of
their transistors for the on-chip
cache

• 1989 the first Intel processor
with on-chip L1 cache was
Intel 486, 8KB size

• 1995 the first Intel processor
with on-chip L2 cache was
Intel Pentium Pro, 256KB size

• 2003 the first Intel processor
with on-chip L3 cache was
Intel Itanium 2, 6MB size

• 1980: no cache in micro-
processor; 2010: 3-level
cache on chip, 4-level cache
off chip

Source: Computer Architecture A Quantitative Approach

Memory-Bound Impact

Memory-Bound & Scaling Function (Sun-Ni’s Law)

a 1-a

p
(1-a)G(p)

time

Xian-He Sun

ppG

pG

TimeWork

pTimepWork
SpeedupMB /)()1(

)()1(

)1(/)1(

)(/)(









7/21/2025

Scalability of Multicore
'

() ()
(1 ') '

() ()

pc

c p

p c pc

ww
w m wperf r m perf r

f mf
w w ww

perf r perf r

      




' p

c p

w
f

w w




Based on Sun-Ni’s
law Multicore is
scalable, if data
access time is
fixed and does not
increase with the
amount of work &
the number of
cores

)(* * MpGW 

Memory-Bound model Impact

X.-H. Sun and Y. Chen, "Reevaluating Amdahl's Law in the Multicore Era," Journal of
Parallel and Distributed Computing, vol. 70, no. 2, pp. 183-188, Feb. 2010

Compute and Memory Performance

Micron E. Confalonieri, IEDM Short Course 2024

Roofline Model:

Memory-Bound Model Impact

Use the scaling function G(pM) in memory-bound as the
Operational Intensities (OI)

7/21/2025 7

The Example: data-access optimization

 DeepSeek MoE uses smaller, fine-grained experts to enhance data parallelism
 MoE Expert Routing ensures load balance and prevents parallelism

inefficiencies
 Optimized pipeline & overlapping hide data movement latency
 All-to-All Communication Optimizations mitigate the data movement overheads
 Memory-Efficient Training & FP8 Mixed Precision reduce memory

requirements and mitigate data movement pressure
 Still: DeepSeek inference spends 12x more time on data access than of

computing time

DeepSeek-V3 Technical Report

Overlapping strategy for a pair of individual forward and backward chunks

Just Buy More DRAM

DRAM is very
expensive

DRAM has a
very high

energy cost

$/GBCapacityPrice
$3.3032GB$106DRAM
$2.10128GB$275PMEM
$0.082TB$169NVMe
$0.044TB$175SATA SSD
$0.0218TB$369HDD

40x more
expensive
than NVMe

Simply increasing DRAM is
not sustainable!

(Performance) Bound is not just Capacity

Only 20% of memory
used in 20% of time

Larger memory means
longer searching time

The Memory-wall
problem

The Traditional Approach: Memory Hierarchy

9

Existing Solution: ASIC from CPU side

 GPU, DSP, AI Chip
 GPU is a chip tailored to graphics processing,

DSP is for signal processing, and AI chip is
designed to do AI tasks

 Limited solution
 Assume data are on the chip

 Limited application
 Computation Accelerator

 Please recall our memory-bound results for
multicore

©copy right 2020 Xian-He Sun 10

New Solution: PIM chip
 PIM

 Processing in memory (also called
processor in memory) is the integration of
a processor with RAM on a single chip.

 NDP (Near-memory Data Processing)
 ISP (In-Storage Processing)

 Computer power is weak
 A full kitchen needs a refrigerator

 Limited application
 Data movement reducer

 A helper/mitigator

7/21/2025

How to use it?

Our Solution: A new component of von Neumann

 Can we make the von Neumann machine data efficient?

 Yes: focus on data and data access delay (data centric)

 How: Advancing current memory-wall solutions

Storage SystemMemory System

Computing
Unit

Data Movement/
Management

Memory/Storage
Unit

Computing System

7/21/2025
11

Research

System
Research

Big Data/AI
Systems

High
Performance
Computing
Data Systems

The Problem
is in the
Middle

Data Centric Imperative

Dataflow under the von Neumann Machine

Off-chip
side

Processor
side

Layer 1 Layer 2 Layer 3 Layer 4

Case #1

Case #2

Case #3

Case #4

Memory Stall Time (MST)

Reduce the Memory Stall Time to minimum

(including in place computing) Utilize current memory system

 Advanced solution: Deep
Memory/IO Hierarchy
 New technologies and

complexities

 Locality and Concurrency

Processor
Registers

CPU Cache

L1 Cache

Physical Memory

Main Memory (DRAM)

Persistent Memory (NVRAM)

CPU

L2 Cache
L3 Cache

Storage Backend

Flash-Based SSD
HDD

Archival Storage (Tapes, …)

Multi-Issue

Multi-Threading

Multi-Core

Multi-Level Cache

Multi-Channel

Multi-Bank

Multi-Rank

Speculative Execution
Out-of-Order Execution

Multi-Banked Cache

Runahead Execution

Pipelined Cache
Non-Blocking Cache

Data Prefetching
Write Buffer

Pipeline
Non-Blocking

Prefetching
Write Buffer

Current Deep Memory-Storage Hierarchy
with Concurrence

New Disruptive under Existing System:
Integration & Concurrency

Our Idea:
Integrated Memory System via
Data Access Concurrency

Our Idea

Challenges: Currency, Integration, environment,
technology, etc.

C-AMAT: Concurrent Data Access fundamental

 C-AMAT is Recursive

Where:

1

1
1 1 1 2- -

H

H
C AMAT MR C AMAT

C
   

1

1

 1 1
1

1 1

m

M

CpMR pAMP

MR AMP C
   

Sun, Xian-He, and Dawei Wang. "Concurrent average memory access time." IEEE Computer 47, no. 5 (2014): 74-80.

Concurrence & locality are equally important

 H: the hit time

 MR: the miss ratio

 CH : the hit concurrency

 κ: the overlapping ratio (pure miss cycles over miss cycles)

 A pure miss cycle is a miss cycle with no hit

𝐶 − 𝐴𝑀𝐴𝑇ଶ =
𝐻ଶ

𝐶ுమ

+ 𝑀𝑅ଶ × 𝜅ଶ × 𝐶 − 𝐴𝑀𝐴𝑇ଷ

14

AMAT = H1 + MR1×AMP1
Where AMP1 = (H2 + MR2×AMP2)

A lot of
Room in data
Concurrency

Theoretical Foundation (model)

M(2)

X(2) H(2)E(2)

X(1)

M(1) X(1) H(1)

13121110987654321

a2
a4

a5
a7

a8 a9

C
ac

he
 L

ev
el

 1
C

ac
he

 L
ev

el
 2

a1 a2
a3 a4 a5 a6 a7 a8 a9 a10

Memory Cycles

L1 pure misses cause CPU stall

J. Liu, P. Espina, & X.-H. Sun, “A Study on Modeling and Optimization of Memory Systems,” Journal of Computer Science and
Technology (JCST), vol. 36, no. 1, pp. 1-19, January 2021

From concurrence-supported locality
To Concurrence-aware Locality, & Locality-aware concurrence,

X. Lu, R. Wang, and X.-H. Sun. "CARE: A Concurrency-Aware Enhanced Lightweight Cache Management Framework", in the 29th IEEE
International Symposium on High-Performance Computer Architecture (HPCA 2023).

Design
• Pure Miss Contribution (PMC)

• Pure miss is more important than miss
• Pure miss has weight (pure miss cycles)
• PMC is the number of pure miss cycles
• PMC can be measured by monitoring MSHR occupancy

• PMC is Predictable
• PMC values of the misses caused by the same Program Counter

(PC) are relatively stable

.

.

.

.

.

.

.

.

.

Way n

DataTagV

Tag Set OffsetAddress

. .
.

. .
.

MSHR

Access Detector (AD)

Pure Miss Detector
(PMD)

PMC Calculation Unit
(PCU)

PMC Measurement Logic
(PML)

Select

Compare
Hit

Data

.

.

.

.

.

.

.

.

.

Way 1

DataTagV
Way 0

DataTagV

...

V Block Addr. Issued PMC
...

Miss

PMC Measurement Structure

Put in Action: Concurrency-Aware Cache Replacement

SPEC & GAP Workloads

X. Lu, H. Najafi, J. Liu, and X.-H. Sun, "CHROME: Concurrency-Aware Holistic Cache Management Framework with Online Reinforcement Learning ,"
in the 30th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2024).

CHROME:
• Integrates cache bypassing and replacement with pattern-based prefetching
• Dynamic Online Learning: for varying workloads and system configurations
• Multiple Program Features for understanding of memory access patterns
• Concurrency-Aware Rewards for concurrent accesses (C-AMAT model)

Action: Concurrency-Aware Holistic Cache Management

CHROME outperforms state-of-the-
art cache management schemes
– Effective across both SPEC and GAP
memory-intensive workloads
– Demonstrates strong scalability

4

6

8

10

12

14

4-core 8-core 16-core

P
er

ce
n

ta
ge

 S
p

ee
d

up

ov
er

 L
R

U

Hawkeye Glider Mockingjay CARE CHROME

9.2%
10.6% 12.9%

0

3

6
9

12

15
18

4-core 8-core 16-core

P
er

ce
n

ta
ge

Sp

ee
d

u
p

ov
er

 L
R

U Hawkeye Glider Mockingjay CARE CHROME

9.5%
12.1% 16.0%

X. Lu, B. Long, X. Chen, Y. Han, and X.-H. Sun, "ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-
Aware Cache Optimizations ," in the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2024).

ACES : Concurrency-Aware SpMM Accelerator
• Adaptive Execution Flow: better software concurrency
• Non-Blocking (NB) Buffer: better hardware concurrency
• Concurrency-Aware Cache Replacement: Considers Reuse Distance (RD) and Fiber

Density (FD), allows all cache lines of a row to be accessed concurrently without any
misses

Action: Concurrency-Aware SpMM Accelerator

• ACES consistently provides optimal performance across all workloads
• 25.5× over SIGMA, 8.9× over SpArch, and 2.1× over SPADA
• Non-Blocking (NB) Buffers enable greater concurrency support
• Concurrency-aware cache replacement policies further exploit this hardware-supported

parallelism

System Optimization: Layered Performance Matching
(LPM)

 If each layer’s performance is matched, then we get the top layer’s
performance and the lowest layer’s capacity

 The Matching ratio values of request and supply at each layer are given
and the matching process is well designed & analyzed

Y. Liu and X. Sun, "LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching Perspective," in
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 11, pp. 2478-2493, 1 Nov. 2019.

Simulatable Measurable Controllable Optimizable

Theoretical Foundation (modeling)

A Matching Example (increase performance)

𝐿𝑃𝑀𝑅 =
ூ௉஼೐ೣ೐×௙೘೐೘

஺௉஼
(1)

 Assume:
CycleCPU = 2 ns

Cyclemem = 8 ns

fmem = 20%

IPCexe = 2.5

APC = 1
 Then:

 In 8 ns, there is 1 memory cycle, and the data supply rate is:
APC * N_Cyclemem = 1

 In 8 ns, there is 4 cpu cycle, and the data request rate is:
IPCexe * N_CycleCPU * fmem = 2

 So:
 The data supply rate does not match the data request rate. We can improve

memory concurrency by adding memory banks or ports to increase data supply
ability to adjust the data supply rate. For example, increase APC from 1 to 2, so:

APC * N_Cyclemem = 2

 And the data supply rate matches with the data request rate.

Case Study

Matching from Another Angle (power consumption)

𝐿𝑃𝑀𝑅 =
ூ௉஼೐ೣ೐×௙೘೐೘

஺௉஼
(1)

 Assume:
CycleCPU = 2 ns

Cyclemem = 8 ns

fmem = 20%

IPCexe = 2.5

APC = 1
 Then:

 In 8 ns, there is 1 memory cycle, and the data supply rate is:
APC * N_Cyclemem = 1

 In 8 ns, there is 4 cpu cycle, and the data request rate is:
IPCexe * N_CycleCPU * fmem = 2

 So:
 The data supply rate does not match the data request rate. We can decrease the

CPU frequency (increase CPU cycle) to adjust the data request rate. For
example, increase the CPU cycle from 2 ns to 4 ns, the N_CycleCPU would be 2, so:

IPCexe * N_CycleCPU * fmem = 1

 And the data request rate matches with the data supply rate.

Case Study

Case Study: Put PIM into the Formula

Memory Stall Time (MST)

CPU.time = ICୣ୶ୣ × CPIୣ୶ୣ + 𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time
+ IC୮୧୫ × (CPI୮୧୫ + PIM stall time) × Cycle.time୮୧୫- Overlapping

 PIM is a way to reduce request and is a trade-off of computing and MST

 Use Pure Miss as a indicator for offloading

 Result: data movement cost decides where to do the computing

22

L Yan, M. Zhang, R. Wang, X. Chen, X. Zou, X. Lu, H Han, and X.-H. Sun, “CoPIM: A Concurrency-aware PIM Workload Offloading Architecture
for Graph Applications,” in the proceedings of the 2021 ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED202),
July 26 – 28, 2021

Percentage of offloaded instructions into memory

Speedup by
19.5% than PEI
with 51.1% fewer
offloaded
instructions

23

Case Study 4: The Intel Optane Technology

 Manufacture hardware integration (matching)

 Challenges
o Data access is application dependent
o Hardware elasticity
o Global optimization
o OS, etc.

 An architecture ahead of time?

N. Zhang, B. Toonen, X-H. Sun, B. Allcock, “Performance Modeling and Evaluation of a Production Disaggregated Memory System,”
International Symposium on Memory Systems (MEMSYS'20), Sept. 2020

Case Study

Dataflow under the von Neumann Machine

 Use LPM to utilize the memory system performance
 Identify the number of layers and carry matching at each layer

 Use C-AMAT (concurrency) and others to perform the matching
 Goal: Dataflow from the source to compute unite with minimum stall

7/21/2025

24

Off-chip
side

Processor
side

Layer 1 Layer 2 Layer 3 Layer 4

Case
#1

Case #2

Case
#3

Case
#4

It is feasible

25

Possible Ways to Match

 Reduce request
o Improve locality, processing-in-memory (PIM) & in place

computing, algorithm improvement, data movement reducer, etc.

 Improve supply
o Improve data access concurrency , buffer, new technology, etc.

Mask the difference
o Overlapping computing with data access delay (pure miss), prefetch,

etc.

 A more balanced design, etc.

Hardware technology, compiler technology, application algorithm
designs, system scheduling, system support, co-design, integration, etc.

The DataflowV Complexity

Data Movement: A New System Component

Off-chip
side

Action: Towards a Unified Memory-centric Computing
System with Cross-layer Support
No delay data access: An integration of memory, storage, architecture (PIM, NDP.
CXL, etc), OS, compiler, runtime systems

Proces
sor
side

Layer
1

Layer
2

Layer
3

Layer
4

Cas
e #1

Cas
e #2

Cas
e #3

Cas
e #4

H. Geng, X. Lu, Y. Che, Z. Tian, D. Cheng, X.-H. Sun, M. Niemier, X. Hu, “COSMOS: RL-Enhanced Locality-Aware Counter Cache
Optimization for Secure Memory”, in the proceedings of the 58th IEEE/ACM International Symposium on Microarchitecture (MICRO-58),
Conference, Oct, 2025 (accepted to appear).

New advances in
computer architecture

Dataflow under the von Neumann machine

• Is your new device/
technology helpful?

• How should they be
used together?

27

 Storage as a layer of the memory hierarchy
 Selective cache, data concurrency, matching
 Independent management of each tier
 Optimized Access Latency, Throughput, Capacity, Network topology, etc.

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O Acceleration via Multi-Tiered Data Buffering and Prefetching,” Journal of Computer Science and Technology, vol. 35, no. 1, pp. 92-120, Jan. 2020

Put in Action: Hermes: A Smart Multi-tiered I/O
Buffering System

CSSI: Frameworks
OCI-1835764

Our First Data Management System

Anthony Kougkas

The Development Challenges

A. Kougkas, H. Devarajan, and X.-H. Sun, “Bridging Storage Semantics using Data Labels and Asynchronous I/O,” ACM
Transactions on Storage, Vol 16, No 4, 2020

28

 Application-aware multi-tier optimization
 Complexity in software development
 Complexity in decision making
 An example of memory/storage integration
 An implementation of the

layered 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎 𝑓𝑙𝑜𝑤 concept

System Complexity

Support
heterogeneo

us
hardware?

Support
heterogeneo

us
hardware? HFetchHFetch

HReplicationHReplication

HCompressHCompress

HStreamingHStreaming

MegaMmapMegaMmap

Container
Lib

Container
Lib

System
Profiler
System
Profiler

ML-driven
Auto-Tuning
ML-driven

Auto-Tuning

Offer data
consistency?

Offer data
consistency?Hermes introduce

several independent
technologies

github.com/grc-
iit/hfetch

github.com/grc-
iit/hcompress

github.com/grc-
iit/hflowgithub.com/grc-iit/hreplica

Technical Preparation

Explore our code at
https://github.com/grc-iit.

ML-driven Auto-Tuning and Auto-Configuration: N. Rajesh, K. Bateman, S. Byna, J. L. Bez, A. Kougkas,
X.-H. Sun. “TunIO: An AI-powered Framework for Optimizing HPC I/O”, IEEE IPDPS 2024.

Other Hermes Tools and Services

 Application orchestrator1:
 schedules application’s access to Hermes in multi-tenant scenarios,

mitigating interference by shared buffers.
 System telemetry2:

 captures in real-time the status of tiers (e.g., load, remaining capacity, etc.,) to enable
efficient data placement by Hermes.

 Application I/O profiling3:
 classifies the I/O phases of applications to enable optimal Hermes configuration tuning

based on incoming access patterns.
 Hermes Container Library4:

 implements STL-like data structures (maps, list, etc) that can be distributed across nodes
and within available storage tiers.

 Resource Management5:
 provision and allocate the best storage hardware resources available based on application

demands and QoS guarantees
 The Memory Management System

30

1.A. Kougkas, H. Devarajan, X-H. Sun, and J. Lofstead. “Harmonia: An Interference-Aware Dynamic I/O Scheduler”, In IEEE International Conference on Cluster Computing 2018
(Cluster’18)

2.N. Rajesh, H. Devarajan, J. Cernuda Garcia, K. Bateman, L. Logan, J. Ye, A. Kougkas, and X-H. Sun. 2020. “Apollo: An ML-assisted Real-Time Storage Resource Observer”. In 30th
International Symposium on High-Performance Parallel and Distributed Computing (HPDC‘21)

3.Hariharan Devarajan, Anthony Kougkas, P. Challa, Xian-He Sun, “Vidya: Performing Code-Block I/O Characterization for Data Access Optimization” In IEEE International Conference
on High Performance Computing, Data, and Analytics 2018 (HiPC’18)

4.H. Devarajan, A. Kougkas, K. Bateman, and X-H Sun. "HCL: Distributing parallel data structures in extreme scales." In 2020 IEEE International Conference on Cluster Computing
(Cluster’20).

5.K. Bateman, N. Rajesh, J. Cernuda, L. Logan, J. Ye, S. Herbein, A. Kougkas, and X.-H. Sun. "LuxIO: Intelligent Resource Provisioning and Auto-Configuration for Storage Services" In
IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC’22)

Blurring the Line of Memory & Storage

31

• Storage has emerged with similar
performance to DRAM

• E.g., Compute Express Link
(CXL) is emerging and allows
storage to be accessed as
memory

• We can combine DRAM and
storage into a tiered and
portable distributed shared
memory (DSM) abstraction

L. Logan, X.-H. Sun, A. Kougkas, “MegaMmap: Blurring the Boundary Between Memory and Storage for Data-Intensive Workloads”,
in the Proceedings of IEEE/ACM SC'24, Atlanta, USA, Nov. 17-22, 2024.

32

The Complexity of HPC I/O Systems

The I/O
Software Stack

of Intrepid

7/21/2025

Bluewaters Storage
System

Jaguar Storage System

Courtesy from Argonne Leadership Computing Facility

33

HPC Simulations and Big Data Analytics

• Particle clustering (BD-
CATS)
 Read intensive analysis

 2.4x faster than baseline (PFS)

 2x improvement compared to
single-tier buffering solutions.

• Vector Particle-In-Cell
(VPIC)
Write intensive simulation

 3x faster than baseline (PFS)

 2.2x improvement compared to
single-tier buffering solutions.

• Gray-Scott Analysis
Read intensive phase

 4x faster than baseline (PFS)

• Gray-Scott reaction and
diffusion models
Write intensive phase

 2.5x faster than baseline (PFS)

 1.7x improvement compared to
single-tier buffering solutions.

Hermes System Results

Utilizing data access concurrence and memory hierarchy system with Multi-tiered I/O buffering

34

Cloud and ML Workloads

YCSB benchmark suite

• Performance superiority, using the same
resources, for a variety of cloud workloads:
A.Webserver

B. Email Server

C. DB queries

D.KVS get/put

• Hermes outperforms SparkML in distributed ML algorithms by more
than 3x highlighting the performance benefits of data tiering.

• Hermes reduces DRAM usage by over 2x, enhancing data processing
capabilities without extra infrastructure overhead.

Kmeans
Clustering

Random
Forest

Hermes System Results

Utilizing data access concurrence and memory hierarchy system with Multi-tiered I/O buffering

L. Logan, X.-H. Sun, A. Kougkas, “MegaMmap: Blurring the Boundary Between Memory and Storage for Data-
Intensive Workloads”, IEEE/ACM SC24, Nov. 2024

35

After Hermes
 Application and Collaboration

 Extended to Active (log) data: the ChronoLog project

 Extended to Meta data: the Coeus project

 Extended to workflow environment, the Cloud environment

 Extended to AI applications

 Fundamental: Data centric system integration
 Unified Memory-centric Computing System (UMC2)

 PIM, DPU, OS and compiler, memory/storage

 LABIO: a data-centric I/O system
 LabStor and DTIO

 The next environment for AI: IOWarp
 Bending the I/O Fabric for Advancing AI-Infused Scientific

Workflows
 StoreHub

7/21/2025

New application
New technology

New environments

 Data requests are transformed into (data) Label units
o A label is a tuple of an operation and a pointer to the data

 A dispatcher distributes labels to the workers
 Workers execute labels independently (i.e., fully decoupled)

A. Kougkas, H. Devarajan, J. Lofstead, X.-H. Sun; “LABIOS: A Distributed Label-Based I/O System”, in Proceedings of ACM
HPDC ’19 (Best Paper Award)

LABIOS: Data Operation with Label

Fundamental

IOWarp: The Continuation

7/21/2025 Gnosis Research CenterIllinois Institute of Technology 37

IOWarp is a data management platform designed to address
the unique challenges in big data and AI applications

IOWarp

IOWarp: the Four Components

● Content Exploration

○ Comprehensive querying and
indexing system and WarpGPT

● Platform Plugins

○ Connecting external tools and
services

● Content Assimilation Engine
○ Convert diverse data formats

into Content

● Content Transfer Engine
○ Manage efficient data transfer

How Can You Get Involved?

The IOWarp organization is the primary contact point for
all IOWarp content https://github.com/iowarp

Inside, new users can:
● Get started quickly with our Installation Guides
https://github.com/iowarp/iowarp-install
● Explore the design and more complex features in the

Tutorial
Our code bases welcome collaborators:

● Our Runtime, modular execution engine for custom storage and
data analytic pipelines.

● Jarvis, a software deployment environment that abstract
hardware and shell complexities.

● A collection of Scientific MCPs and an Exploration Engine
enabling a natural language interface to scientific data.

● The Assimilation Engine, a framework for transforming diverse
format-specific data into an abstracted view called Content.

● The Transfer Engine, a multi-tiered, dynamic, and distributed
I/O buffering system that manages all data movement and
placement.

StoreHub

A Community Testbed

How Can You
Get Involved?

Path Forward: A Community-Driven Initiative

● Community-Centric Approach: Identified needs through surveys,
workshops (HDF User Group, PDSW, SSDBM), and direct conversations.

https://forms.gle/c6fmQkiSrCYWQMij9
● Build vital infrastructure using community insights.
● StoreHub is the nation's premier testbed for storage technologies.

https://grc.iit.edu/research/projects/storehub/

● Pioneering Research: Enabling
breakthroughs in data
management and storage
research.

● Broader Impact: Enhancing
education, workforce
development, and fostering
collaboration.

42

Take Home Messages

Modeling is the foundation :
o From memory-bound to C-AMAT and LPM
o Understanding and Solution

Solution: Dataflow under the von Neumann Machine
oReduce data access time under current systems
o It is a new system paradigm based on performance modeling

Deliverable: Scalable data management systems
oThe Hermes system for DataflowV

o Performance engineering & performance-guided system design
Keywords:
o Data centric rethinking, Data system optimization, HPC4AI

Challenges:
o Understanding and Support of data concurrency and system

integration (the ecosystem)

o Hardware/software co-design

o Infrastructure and testbed
Applications & Infrastructure

43

Conclusion (scalable data management)

 A new computer paradigm is introduced for AI-DL & big data
 Dataflow under the von Neumann Machine

 Performance modeling and understanding is essential for the
success of DataflowV

 Current Success: the Hermes System
 Concurrent data access and system integration

 Ongoing Project: IOWrap
 Geared up for AI applications

 StoreHub: A community and community testbed

Key members of current research staff &
students at Illinois Tech

7/21/2025
44

Anthony Kougkas,
Research Professor

Research Professor

Thank you
Any questions?

7/21/2025 Slide 45

We would like to thank
our sponsors the

National Science
Foundation

Find more at:
sun@iit.edu
www.cs.iit.edu/~scs
www.akougkas.com/research/labios

Please come to our poster tonight at 6:30pm in Room 301A

AI & Data: Challenge & Opportunity in Computer System Research

Xian-He Sun
The Gnosis Research Center at the Illinois Institute of Technology

Gnosis Research Center, Illinois Institute of Technology

